A Stereoselective Synthesis of *cis*-Alkenenitriles Through Reformatsky-Peterson Reaction.

Claudio Palomo*, Jesus M. Aizpurua, Natalia Aurrekoetxea.

Departamento de Química Orgánica. Facultad de Química.Universidad del País Vasco. Apartado: 1072. 20080-San Sebastián. Spain.

Abstract: A new procedure for the preparation of alkenenitriles from trimethylsilylchloroacetonitrile and carbonyl compounds promoted by zinc is described.

In the preceding paper we have described a method for the preparation of β -trimethylsilyloxynitriles and, consequently, a general two-step procedure for the preparation of alkenenitriles, which were often produced as a mixture of *cis* and *trans* isomers. In classical procedures¹ *Z*isomers are usually obtained in lower yields than *E*-isomers and very few reports have been described concerning the synthesis of *Z*-alkenenitriles². We report here a stereoselective one-step synthesis of (*Z*)-alk-2-enenitriles from carbonyl compounds and trimethylsilylchloroacetonitrile, promoted by zinc powder activated by trimethylchlorosilane³.

In a typical experiment, a mixture of trimethylsilylchloroacetonitrile⁴ 2 (0.44g, 3 mmol), the carbonyl compound <u>1</u> (2mmol) and activated zinc powder(0.2g, 3mmol) in tetrahydrofuran (5ml) was refluxed for 10-30min until a clear solution was produced. The resulting solution was poured into aqueous ammonia (20% solution, 25ml) and extracted with methylene chloride (2 x 15ml) and dried (Na₂SO₄). Evaporation of the solvent at reduced pressure gave the corresponding α , β -unsaturated nitrile <u>4</u>, usually as a mixture of Z and E isomers⁵. Some results are summarized in the Table to illustrate the scope of the method. As can be seen from these data , the reaction works well with both enolizable and nonenolizable carbonyl compounds, it is compatible with several functional groups, and it gives only 1,2-addition for α , β -unsaturated aldehydes. Particularly noteworthy is the great Z-selectivity observed for aliphatic aldehydes; for example, in the case of the 4-formyl- β -lactam no isomerization occurred at C₃-C₄ of the β -lactam ring, and the Z-alkenenitrile could be isolated in high yield after crystallization from chloroform/hexane as single isomer (m.p: 207-209²C). The change of the trimethylsilyl group in the starting reagent to a more bulky one, like tertbutyldimethylsilyl group (reagent <u>3</u>) did not increased the Z-selectivity of the reaction and the use of less polar solvents such as benzene neither modified the Z/E ratio.

Further studies involving the enhancement of Z-selectivity in alkenenitrile synthesis are being investigated.

Carbonyl compound	Reaction time(min)	Yield ^b (%)	E:Z ^c ratio	b.p. ^d ⁰C/mmHg	δppm(=CH-CN)	
					E	z
C ₆ H ₅ CHO	30	95	35:65	65/0.04	5.76	5.38
	40e	85	42:58			
	60f	65	40:60			
4-MeOC ₆ H ₄ CHO	10	99	30:70	110/0.03	5.53	5.16
4-MeC ₆ H ₄ CHO	15	98	35:65	100/0.03	5.61	5.20
4-CIC ₆ H ₄ CHO	30	86	20:80	115/0.03	5.73	5.28
4-NCC ₆ H ₄ CHO	50 ^e	82	29:71			
C6H5CH=CHCHO	20	97	35:65	125/0.03	5.44	5.25
C ₆ H ₅ CH(CH ₃)CHO	10	80	0:100	90/0.5		5.13
C ₆ H ₅ CH ₂ CH ₂ CHO	35	83	0:100	100/0.03		5.31
Pht H H CHO						
N.PMP	180	78	5:95		5.70	5.53
Cyclohexanone	25	70		65/0.06		_

Table. Preparation of alkenenitriles^a.

^aAll reactions were conducted on a 3mmol scale. ^bYields refer to isolated materials which gave satisfactory spectral data. ^cDeterminated by 300MHz ¹H-NMR spectroscopy of the crude reaction mixtures. ^dObserved during purification by Kugelrohr distillation; uncorrected values. ^et-butyldimethylsilylchloroacetonitrile <u>3</u> used as reagent. ^f benzene used as solvent.

ACKNOWLEDGEMENT: The present work has been suported by Universidad del País Vasco (Project: UPV-221.215-89) and, in part, by Gobierno Vasco.

REFERENCES AND NOTES

- Doebner-Knoevenaget reaction: G. Jones, Org. React., 1967, <u>15</u>, 204. Wittig reaction: A. Maercker, Org. React., 1965, <u>14</u>, 270. Wittig-Horner reaction: J. Boutagy, R. Thomas, Chem. Rev., 1974, <u>74</u>, 87; W.S. Wadsworth, Jr. Org. React., 1977, <u>25</u>, 73 Peterson reaction: L. Birkofer, A. Ritter, H. Wieden, Chem. Ber., 1962, <u>95</u>, 971; I. Ojima, M. Kumagai, Y. Nagai, Tetrahedron Lett., 1974, 4005; I. Matsuda, S. Murata, Y. Ishii, J. Chem. Soc. Perkin I, 1979, 26; S. Inoue, Y. Sato, Organometallics, 1986, <u>5</u>, 1197. Direct condensation with acetonitrile: G. W. Gokel, S.A. DiBiase, B.A. Lipisko, Tetrahedron Lett., 1976, 3495; S.A. DiBiase, G.W. Gokel, Synthesis, 1977, 629. Condensation with haloacetonitriles in the presence of tri-n-butylstibine: Y.-Z. Huang, Y. Shen, Ch. Chen, Synthetic Commun., 1989, <u>19</u>, 83; tri-n-butylarsine: Y. Shen, B. Yang, Synthetic Commun. 1989, <u>19</u>, 3069.
- a) Y. Sato, Y. Niinomi, J. Chem. Soc; Chem. Commun. 1982, 56 b) R. Haruta, M. Ishiguro, K. Furuta, A. Mori, N. Ikeda, H. Yamamoto Chem. Lett., 1982, 1093 c) I. Matsuda, H. Okada, Y. Izumi, Bull. Chem. Soc. Jpn., 1983, <u>56</u>, 528 d) K. Furuta, M. Ishiguro, R. Haruta, N. Ikeda, H. Yamamoto, Bull. Chem. Soc. Jpn., 1984, <u>57</u>, 2768.
- Activation of zinc was achieved by the method reported by G. Picotin and P. Miginiac, J.Org.Chem., 1987, <u>57</u>, 4796.
- 4.- This reagent was prepared in 50% yield (not optimized) by silylation of chloroacetonitrile following the method of H. Emde, G. Simchen, <u>Synthesis</u>, 1977, 636.
- 5.- The *E/Z* ratio was determined by integrating the =C<u>H</u>-CN signals (¹H-NMR; 300MHz; chemical shift; from δ =5.8 to 5.1ppm). The *Z* isomers peaks always appeared at higher fields than did *E* isomer.

(Received in UK 13 February 1990)